28 research outputs found

    Green compressive sampling reconstruction in IoT networks

    Get PDF
    In this paper, we address the problem of green Compressed Sensing (CS) reconstruction within Internet of Things (IoT) networks, both in terms of computing architecture and reconstruction algorithms. The approach is novel since, unlike most of the literature dealing with energy efficient gathering of the CS measurements, we focus on the energy efficiency of the signal reconstruction stage given the CS measurements. As a first novel contribution, we present an analysis of the energy consumption within the IoT network under two computing architectures. In the first one, reconstruction takes place within the IoT network and the reconstructed data are encoded and transmitted out of the IoT network; in the second one, all the CS measurements are forwarded to off-network devices for reconstruction and storage, i.e., reconstruction is off-loaded. Our analysis shows that the two architectures significantly differ in terms of consumed energy, and it outlines a theoretically motivated criterion to select a green CS reconstruction computing architecture. Specifically, we present a suitable decision function to determine which architecture outperforms the other in terms of energy efficiency. The presented decision function depends on a few IoT network features, such as the network size, the sink connectivity, and other systems’ parameters. As a second novel contribution, we show how to overcome classical performance comparison of different CS reconstruction algorithms usually carried out w.r.t. the achieved accuracy. Specifically, we consider the consumed energy and analyze the energy vs. accuracy trade-off. The herein presented approach, jointly considering signal processing and IoT network issues, is a relevant contribution for designing green compressive sampling architectures in IoT networks

    Network-based brain computer interfaces: principles and applications

    Full text link
    Brain-computer interfaces (BCIs) make possible to interact with the external environment by decoding the mental intention of individuals. BCIs can therefore be used to address basic neuroscience questions but also to unlock a variety of applications from exoskeleton control to neurofeedback (NFB) rehabilitation. In general, BCI usability critically depends on the ability to comprehensively characterize brain functioning and correctly identify the user s mental state. To this end, much of the efforts have focused on improving the classification algorithms taking into account localized brain activities as input features. Despite considerable improvement BCI performance is still unstable and, as a matter of fact, current features represent oversimplified descriptors of brain functioning. In the last decade, growing evidence has shown that the brain works as a networked system composed of multiple specialized and spatially distributed areas that dynamically integrate information. While more complex, looking at how remote brain regions functionally interact represents a grounded alternative to better describe brain functioning. Thanks to recent advances in network science, i.e. a modern field that draws on graph theory, statistical mechanics, data mining and inferential modelling, scientists have now powerful means to characterize complex brain networks derived from neuroimaging data. Notably, summary features can be extracted from these networks to quantitatively measure specific organizational properties across a variety of topological scales. In this topical review, we aim to provide the state-of-the-art supporting the development of a network theoretic approach as a promising tool for understanding BCIs and improve usability

    Functional Connectivity for BCI: OpenViBE implementation

    Get PDF
    Présentations - Session 2International audienc

    Improving J-Divergence of Brain Connectivity States by Graph Laplacian Denoising

    Get PDF
    International audienceFunctional connectivity (FC) can be represented as a network, and is frequently used to better understand the neural underpinnings of complex tasks such as motor imagery (MI) detection in brain-computer interfaces (BCIs). However, errors in the estimation of connectivity can affect the detection performances. In this work, we address the problem of denoising common connectivity estimates to improve the detectability of different connectivity states. Specifically, we propose a graph signal processing based denoising algorithm that acts on the network graph Laplacian. Further, we derive a novel formulation of the Jensen divergence for the denoised Laplacian under different states. Numerical simulations on synthetic data show that denoising improves the Jensen divergence of connectivity patterns corresponding to different task conditions. Furthermore, we apply the Laplacian denoising technique to brain networks estimated from real EEG data recorded during MI-BCI experiments. A novel formulation of the J-divergence allows to quantify the distance between the FC networks in the motor imagery and resting states, as well as to understand the contribution of each Laplacian variable to the total J-divergence between two states. Experimental results on real MI-BCI EEG data demonstrate that the Laplacian denoising improves the separation of motor imagery and resting mental states, and it shortens the time interval required for connectivity estimation. We conclude that the approach shows promise for robust detection of connectivity states while being appealing for implementation in real-time BCI applications

    Predicting the Progression of Mild Cognitive Impairment Using Machine Learning: A Systematic and Quantitative Review

    Get PDF
    Context. Automatically predicting if a subject with Mild Cognitive Impairment (MCI) is going to progress to Alzheimer's disease (AD) dementia in the coming years is a relevant question regarding clinical practice and trial inclusion alike. A large number of articles have been published, with a wide range of algorithms, input variables, data sets and experimental designs. It is unclear which of these factors are determinant for the prediction, and affect the predictive performance that can be expected in clinical practice. We performed a systematic review of studies focusing on the automatic prediction of the progression of MCI to AD dementia. We systematically and statistically studied the influence of different factors on predictive performance. Method. The review included 172 articles, 93 of which were published after 2014. 234 experiments were extracted from these articles. For each of them, we reported the used data set, the feature types (defining 10 categories), the algorithm type (defining 12 categories), performance and potential methodological issues. The impact of the features and algorithm on the performance was evaluated using t-tests on the coefficients of mixed effect linear regressions. Results. We found that using cognitive, fluorodeoxyglucose-positron emission tomog-raphy or potentially electroencephalography and magnetoencephalography variables significantly improves predictive performance compared to not including them (p=0.046, 0.009 and 0.003 respectively), whereas including T1 magnetic resonance imaging, amyloid positron emission tomography or cerebrospinal fluid AD biomarkers does not show a significant effect. On the other hand, the algorithm used in the method does not have a significant impact on performance. We identified several methodological issues. Major issues, found in 23.5% of studies, include the absence of a test set, or its use for feature selection or parameter tuning. Other issues, found in 15.0% of studies, pertain to the usability of the method in clinical practice. We also highlight that short-term predictions are likely not to be better than predicting that subjects stay stable over time. Finally, we highlight possible biases in publications that tend not to publish methods with poor performance on large data sets, which may be censored as negative results. Conclusion. Using machine learning to predict MCI to AD dementia progression is a promising and dynamic field. Among the most predictive modalities, cognitive scores are the cheapest and less invasive, as compared to imaging. The good performance they offer question the wide use of imaging for predicting diagnosis evolution, and call for further exploring fine cognitive assessments. Issues identified in the studies highlight the importance of establishing good practices and guidelines for the use of machine learning as a decision support system in clinical practice

    Réseaux de connectivité cerebrale pour détecter les états mentaux lors de l'imagerie motrice

    No full text
    The brain is a complex network and we know that inter-areal synchronization and de-synchronization mechanisms are crucial to perform motor and cognitive tasks. Nowadays, brain functional interactions are studied in brain-computer interface BCI) applications with more and more interest. This might have strong impact on BCI systems, typically based on univariate features which separately characterize brain regional activities. Indeed, brain connectivity features can be used to develop alternative BCIs in an effort to improve performance and to extend their real-life applicability. The ambition of this thesis is the investigation of brain functional connectivity networks during motor imagery (MI)-based BCI tasks. It aims to identify complex brain functioning, re-organization processes and time-varying dynamics, at both group and individual level. This thesis presents different developments that sequentially enrich an initially simple model in order to obtain a robust method for the study of functional connectivity networks. Experimental results on simulated and real EEG data recorded during BCI tasks prove that our proposed method well explains the variegate behaviour of brain EEG data. Specifically, it provides a characterization of brain functional mechanisms at group level, together with a measure of the separability of mental conditions at individual level. We also present a graph denoising procedure to filter data which simultaneously preserve the graph connectivity structure and enhance the signal-to-noise ratio. Since the use of a BCI system requires a dynamic interaction between user and machine, we finally propose a method to capture the evolution of time-varying data. In essence, this thesis presents a novel framework to grasp the complexity of graph functional connectivity during cognitive tasks.Le cerveau est un réseau complexe et nous savons que les mécanismes de synchronisation et de désynchronisation sont essentiels pour effectuer des taches motrices et cognitives. De nos jours, les interactions fonctionnelles cérébrales sont étudiées dans des applications d'interface cerveau-ordinateur (BCI) avec de plus en plus d'intérêt. Cela pourrait avoir un fort impact sur les systèmes BCI, généralement bases sur des caractéristiques univariées qui caractérisent séparément les activités régionales du cerveau. En effet, les fonctionnalités de connectivité cérébrale peuvent être utilisées pour développer des BCI alternatifs dans le but d'améliorer les performances et d'\'e9tendre leur applicabilité dans la vie r\'e9elle. L'ambition de cette thèse est l'étude des réseaux de connectivité fonctionnelle du cerveau lors de taches BCI basées sur l'imagerie motrice (IM). Il vise à identifier le fonctionnement cérébral complexe, les processus de réorganisation et les dynamiques variant dans le temps à la fois au niveau du groupe et de l'individu. Cette thèse présente différents développements qui enrichissent séquentiellement un modèle initialement simple afin d'obtenir une méthode robuste pour l'étude des réseaux de connectivité fonctionnelle. Les résultats expérimentaux sur des données EEG simulées et réelles enregistrés pendant les taches BCI prouvent que notre méthode proposée explique bien le comportement variegate des données EEG cérébrales. Plus précisément, il fournit une caractérisation des mécanismes fonctionnels du cerveau au niveau du groupe, ainsi qu'une mesure de la séparabilité des conditions mentales au niveau individuel. Nous présentons également une procédure de réduction du bruit de graphe pour filtrer les données qui préservent simultanément la structure de connectivité du graphe et améliorent le rapport signal sur bruit. Puisque l'utilisation d'un système BCI nécessite une interaction dynamique entre l'utilisateur et la machine, nous proposons enfin une méthode pour capturer l'évolution des données variant dans le temps. Essentiellement, cette thèse présente un nouveau cadre pour saisir la complexité de la connectivité fonctionnelle des graphes lors de tâches cognitives
    corecore